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Abstract

LARS, an earlier study on large batch optimization settings, proposed an adaptive learning
rate and successfully train in large batch settings without significant accuracy loss on image
classification models (e.g., ResNet-50 and AlexNet). However, this optimization has not
been well-studied for other task like object detection. In this paper, we propose a new large
batch optimization framework for object detection using LARS, named CoolDet. We have
also discovered that local learning rates (LR) by LARS in object detection increase as the
step grows. Specifically, we suggest using warm-up, SyncBN, and cosine annealing. Cosine
annealing is used to decrease the global LR in order to stabilize training due to local LR
growth. By combining these techniques with warm-up and SyncBN, we have been able to
train the COCO dataset using Mask-RCNN and obtained an mAP of 38.68, which exceeds
previous studies with the same settings.

Keywords: large batch optimization, LARS, distributed training, cosine annealing, ob-
ject detection

1 Introduction

In recent years, the progress made in deep neural networks has been truly impressive,
particularly in the field of computer vision. This advancement has allowed machines to
achieve an unprecedented level of accuracy in comprehending and interpreting visual data.
Object detection, a fundamental component, has played a significant role in supporting a
wide range of applications such as autonomous driving, surveillance systems, and augmented
reality (Pathak et al., 2018). One of supporting aspects is huge amounts of data that helps
convolutional neural networks (CNN) performs well.

In other side, training of large network with amounts of data takes a lot of time. As
the complexity and scale of visual data continue to grow exponentially, traditional machine
learning approaches often face limitations in processing power and scalability. To address
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these challenges, data parallelism has emerged as a powerful paradigm, enabling the training
models across a network of interconnected computing nodes and data (Wang, 2022).

The trivia way to speed up CNN training is to add more computational unit (e.g. more
GPU nodes) and train network using data-parallel. It is important to ensure that the
chunk size assigned to each worker is sufficiently large to utilize of computational resources,
otherwise, it would be useless. Consequently, as the number of workers is scaled up, the
batch size increases. However, as observed by Krizhevsky (2014), it is worth nothing that
using a large batch size can have a detrimental effect on the model’s accuracy.

Linear Scaling Rule (LSR) proposed by Krizhevsky (2014) which when the batch size is
increased by a factor of K, the Learning Rate (LR) should also be scaled by the same factor
K. Applying using larger LR makes more difficult and sometimes diverge especially on the
initial phase. To solve this problem, Goyal et al. (2017) suggested using warm-up strategy
that starting LR with small number and gradually increased to base LR.

Furthermore, You et al. (2017a) proposed Layer-wise Adaptive Rate Scaling (LARS)
algorithm that introduced local LR for adapting each layer’s learning rate based on the
norm of its weights and the norm of its gradients. This ratio varies a lot between different
layers, which makes it necessary to use a separate LR for each layer and leads to better
stability. Similar algorithm with same philosophy and good performance in the large batch
training is LAMB, the algorithm that proposed by You et al. (2020) for training BERT
(Devlin et al., 2019).

Despite the successfully results for training large batch in image classification task,
there are still lack of works that focus on training large batch for object detection. Some
of works proposed using LSR, and other optimization such as warm-up and Sync Batch
Normalization (SyncBN) done by MegDet (Peng et al., 2018) and LargeDet (Wang et al.,
2020). MegDet use SGD and enables training up to batch size 256 using 128 GPU with
warm-up and SyncBN. LargeDet introduced PMD-LAMB, LAMB-based algorithm, that
also successfully trains network up to batch size 1056 using 160 GPU. As comparison, the
original from the object detector R-CNN series involving only 2 images per batch. However,
this paper will use LARS an SGD-based optimizer that shares the same philosophy as
LAMB.

One of the gradient-based optimization to improve rate of convergence are using warm
restarts. Loshchilov and Hutter (2017) proposed Stochastic Gradient Descent with Warm
Restarts (SGDR), a simple warm restart technique that utilize cosine annealing for SGD
and leads to decreased test error on CIFAR-10 and CIFAR-100 dataset using single model
or ensemble model (Huang et al., 2017). We will use warm restarts and cosine annealing to
improve our convergence rate training.

Table 1: Comparisons of best mAP

GPU mAP Time

LargeDet (Wang et al., 2020) 160 37.61 17m
MegDet (Peng et al., 2018) 8 37.8 60h 18m
CoolDet (ours) 8 38.68 4h 21m
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In this paper, we analyze local LR that produced by LARS and found that local LR
will be increased as the model has more layers. If global LR increased as epoch this could
be lead to divergence. On the other hand, if global LR still remains same this would
instability. We will be using SGDR to tackle the issue. To be specific, we proposed CoolDet
that first using warm-up strategy to prevent divergence on the initial phase. Then using
LARS to improve model performance under larger batch size setting. We also combined
with SyncBN to increase generalization and robustness of the network in large batch size
training. Finally we are using SGDR with cosine annealing-based algorithm to improve
stability and convergence rate in model gradient as well as improving model performance.
We named CoolDet after it gradually decrease LR just like cooling-down phase. As stated
in Table 1, CoolDet successfully exceeds previous methods got 38.68 with 4 hours on 8
GPUs. In contrast, other method with same amount of GPUs received 37.8 mAP for 60
hour training. Since we have some limitation, we only can use 8 GPUs for training.

In summary, our contributions can be stated as:

1. We are the first that train object detector using LARS and found most of local LR is
increasing as epoch grows, while this could leads to instability or even diverge training.

2. We present combined framework to train on object detection and improve conver-
gence rate in training large batch, named CoolDet, and successfully achieving higher
accuracy. We demonstrate use cooling-down cosine annealing to improve stability and
performance model.

3. We effectively utilize 8 GPU to finish COCO in 4 hours and scale up to 128 batch
size without signification accuracy drop. We provide the source code in here: https:
//github.com/ilhamsyahids/cooldet

2 Related Work

2.1 CNN-based Detectors

The present deep learning based methodologies for object detection may be divided into two
major categories, which are single-stage and two-stage strategies. In the event of classical
two-stage algorithms, like Faster R-CNN (Ren et al., 2016), R-FCN (Dai et al., 2016),
Mask R-CNN (He et al., 2017), among others, generating a significant number of proposals
in the first stage, although with relatively low accuracy, these are subsequently refined in
the second stage.

Unlike other approaches, YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), Reti-
naNet (Lin et al., 2018), and others perform efficiently with a more straightforward method.
These make predictions directly on the entire feature map without the requirement of pro-
posal generation, thereby delivering superior speed. In the present era, certain single-stage
detectors have been capable of yielding comparable results to their two-stage counterparts.

2.2 Large Batch Optimization

Linear Scaling Rule and Warmup. In recent years, the training of image classification
models using large batch sizes has garnered considerable attention from researchers. The
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Linear Scaling Rule (LSR) has been widely adopted as a standard practice for training
CNNs, as it ensures that the accuracy of models trained using different batch sizes remains
relatively constant. The LSR has been mathematically explained in Goyal et al. (2017);
Peng et al. (2018) and is commonly used in daily practice.

Training with large mini-batch size usually requires large learning rate as well as men-
tioned in LSR. This method could leads divergence in early epoch. Warm-up strategy has
been extensively demonstrated as a solution as mention by Goyal et al. (2017); You et al.
(2017a); Peng et al. (2018); Wang et al. (2020). Warm-up train using small LR and grad-
ually increase to target LR. By adopting the warm-up strategy in conjunction with LSR,
Goyal et al. (2017) was able to scale the batch size of ResNet-50 to 8192. Although it has
been demonstrated in image classification task, but the use of large learning rate in object
detection most likely leading to failure due to divergence.

A noteworthy study conducted by You et al. (2017a) introduced the Layer-wise Adaptive
Rate Scaling (LARS) algorithm, which successfully scaled the batch size of ResNet-50 to
32768. As successor of the LARS algorithm, You et al. (2020) proposed LAMB. Both LARS
and LAMB leverage same philosophy which is the norms of weights and gradients to adjust
the learning rate of each layer. The primary difference between the two algorithms is that
LARS originates from the commonly used Stochastic Gradient Descent (SGD) algorithm,
while LAMB is a variant of the ADAM algorithm (Kingma and Ba, 2017).

Sync Batch Normalization. Batch Normalization (Ioffe and Szegedy, 2015) is one of
important technique for normalizing layer inputs and also acts as a regularizer. Originally
this allows us to handle internal covariate shift. In distributed context, batch data in one
node might not be relevant for normalizing. Additionally for object detection, the network
detector needs to handle objects various scales and resolution. To handle this, we have
to collect statistics from other node and synchronize it. MegDet (Peng et al., 2018) have
been analyzed and successfully using Cross-GPU Batch Normalization (SyncBN) to perform
batch normalization across multiple GPU to collect sufficient statistics from more samples,
making it possible to train a detector with a large batch size and received higher accuracy.

3 Methods

In this section, we first analyze the problems with LARS on relatively large layer detectors.
Then we combined warm-up, SyncBN, and cosine annealing to handle that problems. Last,
we present CoolDet as object detection framework that finish training in relatively less time
and achieving higher accuracy.

3.1 Problems with LARS

LARS (You et al., 2017a) has been successfully train ResNet-50 and AlexNet in large batch
size settings without losing accuracy significantly. It also adopted warm-up and batch norm
to further improve the network as it increase performance. However, LARS are not well
explored with scaling more nodes and still use benchmarking model which relatively small
in layers. Problem with scaling has been further explored in You et al. (2017b); Mikami
et al. (2018) which scale into x2048 KNL and x3456 Tesla V100 respectively and achieve
notable results. But still using ResNet-50 as base model. While LAMB, the successor of
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LARS, been using in Wang et al. (2020) as base algorithm, but in contrast utilizing other
models in LARS have remains very small literature.

As Figure 1, we argue that in two-stage object detector, local LR mean will be increased.
This changes is different with original local LR LARS and may lead to instability. Based
on LARS algorithm:

∆wl
t = γ ∗ λl ∗ ∇L(wl

t) (1)

λl = η × ∥wl∥
∥∇L(wl

t)∥
(2)

As λl increasing, network will be raised as well, it would leads to training unstable. Lowering
γ could be the solution to stabilize the training. Therefore, we will be using LARS and
Mask-RCNN to know further about local LR updates and tackle the problem using some
of our methods. This also allows us to better understanding for further adaptive training
as LARS become first adaptive LR in this area.

Figure 1: Average of local LR on network detectors

3.2 Warm Restart

As argued in 3.1 and based on Wang et al. (2020), the network that composed by many
layers with various feature channel numbers, feature map sizes and weight distributions
may endows each layer diverse tolerance to the learning rate may leads divergence. One of
the idea to tackle this is by using LR scheduler. To be specific, we borrowed warm restart
technique proposed by Loshchilov and Hutter (2017).

Warm restart technique is using cosine annealing as base algorithm:

ηt = ηimin +
1

2
(ηimax − ηimin)(1 + cos(

Tcur

Ti
π)) (3)
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LR will in range of ηimax and ηimin, Tcur represented as step or epoch since last restart and Ti

is step or epoch that will be restart. The idea is opposite to warm-up which is initially LR
will have max value (ηmax) and will gradually decreased to min LR and restart to max value
at that epoch. Noted that if Ti is max epoch that means we do not use restart technique
instead only decreasing the LR till the minimum at the end of training.

This technique has been used in Wide Residual Network (Zagoruyko and Komodakis,
2017) which is ResNet-based and successfully lowering test error in CIFAR-10 and CIFAR-
100 dataset from 6.43% and 25.16% till 3.14% and 16.21% respectively.

3.3 CoolDet Framework

We proposed new framework for training large batch combining LARS with warm-up,
SyncBN and cosine annealing named CoolDet. This combination is based on previous
research and give the remarkable results. Warm-up used for prevent divergence in early
training and SyncBN to collect statistics data during training. Cosine annealing to allows
us decrease LR as we analyzed that local LR increase in object detection task.

In summary, CoolDet addresses coverage of using LARS in object detection. We found
that local LR is rapidly raise and leads to unstable and diverge training. To tackle this, we
introduce using warm restart, cosine annealing based algorithm.

4 Experiments

In this section, we conduct experiments using COCO 2017 dataset (Lin et al., 2014) to vali-
date our framework. We are training over 118K train data and evaluate 5K validation data
scattered into 91 categories. For evaluation, we use standard COCO metric mAP@0.5:0.95,
which averages mAP over IoUs from 0.5 to 0.95. For model, we follow Peng et al. (2018);
Wang et al. (2020) settings to fairly comparisons which we use ResNet-50 (He et al., 2015)
pre-trained on ImageNet (Deng et al., 2009) as the backbone network and Feature Pyramid
Network (FPN) (Lin et al., 2017) as the detection framework. All of the experiments are
maximum to 10 epoch and conducted on NVIDIA DGX-1 Server unless mention other.

4.1 Experiments Baseline

We first training with baseline settings to reference other experiments. We use the SGD
optimizer with momentum 0.9, and adopts the weight decay 0.0001. The base learning
rate for mini-batch size 16 is 0.02. In this experiments, we explored warm-up epoch, LR
scheduler and we take note on mAP and time. LR scheduler that we use are multistep,
cosine annealing and no scheduler (no changes on LR). The results are summarized in Table
2.

We can observe that:

1. No changes or increasing LR as conducted in no scheduler and multistep with gamma
2 have higher mAP. But still not even comparable to previous research (33.92 vs 36.7
(Wang et al., 2020) vs 36.2 (Peng et al., 2018)). Unexpectedly, we traing 90% faster
than MegDet (3h vs 33h).
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Table 2: Baseline evaluation results

Scheduler warmup gamma step mAPbbox mAPsegm time

No Scheduler 1 - - 33.92 30.52 3h 23m
3 - - 33.65 30.32 3h 23m

Multistep 1 0.1 5, 8 30.45 27.24 3h 24m
1 2 5, 8 33.70 30.65 3h 23m
3 2 5, 8 33.39 30.47 3h 23m

Cosine Annealing 1 - - 30.83 27.52 3h 35m
- - - 28.87 26.35 3h 26m

2. Warm-up with epoch 1 have better mAP than warm-up until epoch 3. Thus, we will
be use warm-up only in epoch 1.

4.2 Experiments LARS

We conduct this experiments as baseline settings except using LARS as optimizer and the
LR. When using LR 0.02, we are not able to manage to make training converge even with
warm-up. We also perform cosine annealing restart with cycle on every 2 epoch. We
summary the results in Table 3 and Figure 2 denoted as LR changes over step.

Table 3: LARS evaluation results

Scheduler LR warmup gamma step mAPbbox mAPsegm time

No Scheduler 0.001 - - - - - failed
0.0003 - - - 32.20 30.76 3h 33m
0.0003 1 - - 34.54 32.26 3h 29m

Multistep 0.001 1 0.5 3,5,8 36.32 33.35 3h 29m
0.001 1 0.75 3,5,8 35.66 32.93 3h 29m
0.001 1 0.75 5,8 35.58 32.87 3h 31m
0.001 1 2 5,8 18.84 18.48 3h 30m
0.001 1 0.1 1 29.36 28.73 3h 32m

Cosine Annealing 0.001 - - - - - failed
0.0003 - - - 31.96 30.64 3h 43m
0.002 1 - - - - failed
0.001 1 - - 36.93 33.82 3h 33m

With Restart 0.001 1 2 - - - failed
0.001 1 0.5 - 36.41 33.06 3h 33m

From the experiments results, we have the following observations. First, decreasing
LR have higher mAP than no changes or increasing LR and higher mAP is in using cosine
annealing. Multistep with gamma 0.5 with step on 3, 5, 8 epoch along with cosine annealing
are higher than others and with slightly different mAP. We found that these 2 settings have
same LR changes as in Figure 2. This observations is different from previous baseline
experiments and we argue due to increasing local LR. Second, warm-up still proven to be
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good in handling divergence and improve performance. Third, cosine annealing exceeds
baseline MegDet and LargeDet (36.93 vs 36.2 vs 36.7). Thus, we will be using cosine
annealing with warm-up for next experiments.

Figure 2: LR changes using LARS

LR Hyperparameters Cosine Annealing Previous experiments conduct in cosine
annealing are not further explore with LR. In this experiments, we try to compare some of
LR which is and 0.00033, 0.0007, 0.0008, 0.0009, 0.001, 0.0015, and 0.0016 and use them
for next experiments. The results are summarized in Figure 3. We can observe that LR
with 0.0008 surprisingly exceeding other mAP in 38.02.

4.3 Experiments Local LR

This experiments mainly to observe local LR changes on detectors. We collect all the local
LR in each layer and average it. There are around 225 layers with 183 Backbone, 34 RoI
Head, and 8 RPN. To reduce bias, we perform three times experiments. The results in
stated in Figure 1.

We found that for every run, there is increasing trend of local LR average. Local LR
average start with 20 and gradually increase to 100 in the end of training. We observed
that all the layers in RPN (Figure 4) and half of RoI Head (Figure 5) layers are raising.
For LARS, local LR is important for updating weight and involving in evaluation metrics.
Empirically, as in Equation 1, if γ and λl higher than normally, this could lead training
unstable as observed in 4.2. Therefore, strategy to gradually lower LR could improve
stability and performance.

4.4 Experiments Batch Size and SyncBN

After we found that lowering LR gradually helps stability of the network, we conduct
experiments of large batch size and using SyncBN. For this experiments, we change our
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Figure 3: Cosine Annealing LR hyperparameters

Figure 4: Local LR of RPN Layer. All of the layers observed to be increasing
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Figure 5: Sample local LR of RoI Head. We observed only 13 out of 34 that decreasing,
remains are increasing
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infrastructure to use AWS p3.16xlarge due to our limitation of previous server. We are
using two machine with each has 8 GPU Tesla V100 16GB. Table 4 denoting as experiments
without using SyncBN and Table 5 experiments that using SyncBN.

Table 4: Batch size experiments without using SyncBN

Batch Size # of Hosts # of GPUs mAP BBox mAP Segm Time

64 1 8 38.37 34.71 4h 5m
128 2 16 36.83 33.67 2h 10m

Table 5: Batch size experiments using SyncBN

Batch Size # of Hosts # of GPUs mAP BBox mAP Segm Time

64 1 8 38.68 34.96 4h 21m
128 2 16 37.02 33.98 2h 41m

We achieve remarkable results, in batch size 64 the evaluation receive higher than pre-
vious research. In compare with MegDet (Peng et al., 2018) and LargeDet (Wang et al.,
2020) that have same settings, we got higher mAP (38.68 vs 37.8 vs 37.61). We also observe
than when batch size grows, the network fails to maintain mAP. We argue that we do not
follow LSR and still using same parameter as batch size 64. Surely, large batch size leads
to faster training. We obtained almost 2 times in training time.

For experiment without SyncBN, detector achieve 38.37 while with SyncBN is 38.68.
We conjecture that due to insufficient data in normalization and this may leads to higher
loss, so when SyncBN applied it improve the mAP. The loss could be seen in this Table 6.

5 Conclusion

We presented a new large batch optimization framework for object detection named CoolDet,
which we combined LARS, warm-up, warm restart, and SyncBN. We successfully finish
training COCO 2017 dataset using Mask-RCNN and achieve remarkable mAP 38.68 which
is higher than previous research. Additionally, we perform experiments with multi-GPU

Table 6: Comparisons between batch size and SyncBN. Less is better

Loss
64 128

w Sync-BN wo Sync-BN w Sync-BN wo Sync-BN

loss objectness 0.01777 0.02107 0.02663 0.03037
loss classifier 0.1258 0.1411 0.1953 0.2184
loss mask 0.2302 0.2393 0.2444 0.2547
loss rpn box reg 0.0416 0.04107 0.05913 0.06054
loss box reg 0.1778 0.183 0.252 0.2621
training step loss 0.5932 0.6255 0.7773 0.826
training loss 0.6571 0.6917 0.6899 0.7292
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along with multi-host to demonstrate. Hopefully, our research could open for other future
findings of large batch optimization.
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